Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Infect Dis ; 2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-2324707

ABSTRACT

Since the emergence of SARS-CoV-2, humans have been exposed to distinct SARS-CoV-2 antigens, either by infection with different variants, and/or vaccination. Population immunity is thus highly heterogeneous, but the impact of such heterogeneity on the effectiveness and breadth of the antibody-mediated response is unclear. We measured antibody-mediated neutralisation responses against SARS-CoV-2Wuhan, SARS-CoV-2α, SARS-CoV-2δ and SARS-CoV-2ο pseudoviruses using sera from patients with distinct immunological histories, including naive, vaccinated, infected with SARS-CoV-2Wuhan, SARS-CoV-2α or SARS-CoV-2δ, and vaccinated/infected individuals. We show that the breadth and potency of the antibody-mediated response is influenced by the number, the variant, and the nature (infection or vaccination) of exposures, and that individuals with mixed immunity acquired by vaccination and natural exposure exhibit the broadest and most potent responses. Our results suggest that the interplay between host immunity and SARS-CoV-2 evolution will shape the antigenicity and subsequent transmission dynamics of SARS-CoV-2, with important implications for future vaccine design.

2.
Front Immunol ; 14: 1146702, 2023.
Article in English | MEDLINE | ID: covidwho-2301521

ABSTRACT

The SARS-CoV-2 pandemic enables the analysis of immune responses induced against a novel coronavirus infecting immunologically naïve individuals. This provides an opportunity for analysis of immune responses and associations with age, sex and disease severity. Here we measured an array of solid-phase binding antibody and viral neutralising Ab (nAb) responses in participants (n=337) of the ISARIC4C cohort and characterised their correlation with peak disease severity during acute infection and early convalescence. Overall, the responses in a Double Antigen Binding Assay (DABA) for antibody to the receptor binding domain (anti-RBD) correlated well with IgM as well as IgG responses against viral spike, S1 and nucleocapsid protein (NP) antigens. DABA reactivity also correlated with nAb. As we and others reported previously, there is greater risk of severe disease and death in older men, whilst the sex ratio was found to be equal within each severity grouping in younger people. In older males with severe disease (mean age 68 years), peak antibody levels were found to be delayed by one to two weeks compared with women, and nAb responses were delayed further. Additionally, we demonstrated that solid-phase binding antibody responses reached higher levels in males as measured via DABA and IgM binding against Spike, NP and S1 antigens. In contrast, this was not observed for nAb responses. When measuring SARS-CoV-2 RNA transcripts (as a surrogate for viral shedding) in nasal swabs at recruitment, we saw no significant differences by sex or disease severity status. However, we have shown higher antibody levels associated with low nasal viral RNA indicating a role of antibody responses in controlling viral replication and shedding in the upper airway. In this study, we have shown discernible differences in the humoral immune responses between males and females and these differences associate with age as well as with resultant disease severity.


Subject(s)
COVID-19 , Male , Humans , Female , Aged , SARS-CoV-2 , Prospective Studies , Antibody Formation , RNA, Viral , Antibodies, Viral , Nucleocapsid Proteins , Hospitals , Patient Acuity , Immunoglobulin M
3.
Euro Surveill ; 28(15)2023 04.
Article in English | MEDLINE | ID: covidwho-2295895

ABSTRACT

BackgroundTo cope with the persistence of the COVID-19 epidemic and the decrease in antibody levels following vaccination, a third dose of vaccine has been recommended in the general population. However, several vaccine regimens had been used initially for the primary vaccination course, and the heterologous Vaxzevria/Comirnaty regimen had shown better efficacy and immunogenicity than the homologous Comirnaty/Comirnaty regimen.AimWe wanted to determine if this benefit was retained after a third dose of an mRNA vaccine.MethodsWe combined an observational epidemiological study of SARS-CoV-2 infections among vaccinated healthcare workers at the University Hospital of Lyon, France, with a prospective cohort study to analyse immunological parameters before and after the third mRNA vaccine dose.ResultsFollowing the second vaccine dose, heterologous vaccination regimens were more protective against infection than homologous regimens (adjusted hazard ratio (HR) = 1.88; 95% confidence interval (CI): 1.18-3.00; p = 0.008), but this was no longer the case after the third dose (adjusted HR = 0.86; 95% CI: 0.72-1.02; p = 0.082). Receptor-binding domain-specific IgG levels and serum neutralisation capacity against different SARS-CoV-2 variants were higher after the third dose than after the second dose in the homologous regimen group, but not in the heterologous group.ConclusionThe advantage conferred by heterologous vaccination was lost after the third dose in terms of both protection and immunogenicity. Immunological measurements 1 month after vaccination suggest that heterologous vaccination induces maximal immunity after the second dose, whereas the third dose is required to reach the same level in individuals with a homologous regimen.


Subject(s)
COVID-19 , Vaccines , Humans , Antibodies, Viral , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , France/epidemiology , Prospective Studies , SARS-CoV-2 , Vaccination
4.
BIOpreparations ; Prevention, Diagnosis, Treatment. 22(4):392-404, 2022.
Article in Russian | EMBASE | ID: covidwho-2281957

ABSTRACT

The development of COVID-globulin, a COVID-19-specific human immunoglobulin preparation, involved choosing a method to quantify antibodies to SARS-CoV-2. Antibody titre determination by virus neutralisation (VN) is labour-intensive and unsuitable for large-scale application. To enable routine testing, it was necessary to develop a less demanding method;the enzyme-linked immunosorbent assay (ELISA) was the most appropriate of solutions. The lack of international and industry reference standards (RS) prompted the preparation and certification of an RS for COVID-globulin potency control. The aim of the study was to examine the possibility of substituting ELISA for VN and to develop an RS for SARS-CoV-2 antibody quantification in immunoglobulin preparations. Material(s) and Method(s): the authors used commercial ELISA kits by several manufacturers, COVID-globulin by Microgen (48 batches), and human plasma samples from multiple sources (1499 samples). The tests were performed by VN, ELISA, and chemiluminescent microparticle immunoassay. Result(s): the authors validated an ELISA method for SARSCoV-2 antibody quantification with the selected reagent kits by the National Medical Research Center for Hematology (NMRC for Hematology) and Euroimmun AG. The authors demonstrated the possibility of using ELISA instead of VN (with a correlation coefficient of more than 0.9). They developed and characterised an in-house RS for SARS-CoV-2 antibody content in human immunoglobulin preparations. The RS was certified in newly introduced anti-COVID units (ACU) and in international binding antibody units (BAU) using the World Health Organisation (WHO) international reference panel (NIBSC code: 20/268). The RS's potency was measured in terms of its neutralising activity in ACU (320 ACU/mL) and BAU (2234.8 BAU/mL). The authors established the relationship between ACU and BAU units. For the selected ELISA reagent kits, the conversion factors were 6.4 (NMRC for Hematology) and 7.0 (Euroimmun AG). Conclusion(s): the ELISA method for SARS-CoV-2 antibody quantification and the RS for SARS-CoV-2 antibody content can be applied to determine the potency of human anti-COVID-19 immunoglobulins.Copyright © 2023 Safety and Risk of Pharmacotherapy. All rights reserved.

5.
Viruses ; 15(3)2023 02 25.
Article in English | MEDLINE | ID: covidwho-2255562

ABSTRACT

In the summer of 2020, it became clear that the genetic composition of SARS-CoV-2 was changing rapidly. This was highlighted by the rapid emergence of the D614G mutation at that time. In the autumn of 2020, the project entitled "Agility" was initiated with funding from the Coalition for Epidemic Preparedness Innovations (CEPI) to assess new variants of SARS-CoV-2. The project was designed to reach out and intercept swabs containing live variant viruses in order to generate highly characterised master and working stocks, and to assess the biological consequences of the rapid genetic changes using both in vitro and in vivo approaches. Since November 2020, a total of 21 variants have been acquired and tested against either a panel of convalescent sera from early in the pandemic, and/or a panel of plasma from triple-vaccinated participants. A pattern of continuous evolution of SARS-CoV-2 has been revealed. Sequential characterisation of the most globally significant variants available to us, generated in real-time, indicated that the most recent Omicron variants appear to have evolved in a manner that avoids immunological recognition by convalescent plasma from the era of the ancestral virus when analysed in an authentic virus neutralisation assay.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Serotherapy , Mutation , Pandemics , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
6.
EBioMedicine ; 89: 104475, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2284893

ABSTRACT

BACKGROUND: Given the importance of vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the prevention of severe coronavirus disease 2019 (COVID-19), detailed long-term analyses of neutralising antibody responses are required to inform immunisation strategies. METHODS: In this study, longitudinal neutralising antibody titres to an ancestral SARS-CoV-2 isolate and cross-neutralisation to delta and omicron isolates were analysed in individuals previously infected with SARS-CoV-2, vaccinated against COVID-19, or a complex mix thereof with up to two years of follow-up. FINDINGS: Both infection-induced and vaccine-induced neutralising responses against SARS-CoV-2 appeared to follow similar decay patterns. Following vaccination in previously infected individuals, neutralising antibody responses were more durable than prior to vaccination. Further, this study shows that vaccination after infection, as well as booster vaccination, increases the cross-neutralising potential to both delta and omicron SARS-CoV-2 variants. INTERPRETATION: Taken together, these results suggest that neither type of antigen exposure is superior for neutralising antibody durability. However, these results support vaccination to increase the durability and cross-neutralisation potential of neutralising responses, thereby enhancing protection against severe COVID-19. FUNDING: This work was supported by grants from The Capital Region of Denmark's Research Foundation, the Novo Nordisk Foundation, the Independent Research Fund Denmark, the Candys Foundation, and the Danish Agency for Science and Higher Education.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines , Vaccination , Immunization, Secondary , Antibodies, Neutralizing , Antibodies, Viral
7.
Vaccines (Basel) ; 11(3)2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2284834

ABSTRACT

The early availability of effective vaccines against SARS-CoV-2, the aetiologic cause of COVID-19, has been at the cornerstone of the global recovery from the pandemic. This study aimed to assess the antispike RBD IgG antibody titres and neutralisation potential of COVID-19 convalescent plasma and the sera of Moldovan adults vaccinated with the Sinopharm BBIBP-CorV vaccine. An IgG ELISA with recombinant SARS-CoV-2 spike RBD and two pseudovirus-based neutralisation assays have been developed to evaluate neutralising antibodies against SARS-CoV-2 in biosafety level 2 containment facilities. A significant moderate correlation was observed between IgG titres and the overall neutralising levels for each neutralisation assay (ρ = 0.64, p < 0.001; ρ = 0.52, p < 0.001). A separate analysis of convalescent and vaccinated individuals showed a higher correlation of neutralising and IgG titres in convalescent individuals (ρ = 0.68, p < 0.001, ρ = 0.45, p < 0.001) compared with vaccinated individuals (ρ = 0.58, p < 0.001; ρ = 0.53, p < 0.001). It can be concluded that individuals who recovered from infection developed higher levels of antispike RBD IgG antibodies. In comparison, the Sinopharm-vaccinated individuals produced higher levels of neutralising antibodies than convalescent plasma.

8.
Vaccine ; 41(13): 2261-2269, 2023 03 24.
Article in English | MEDLINE | ID: covidwho-2274604

ABSTRACT

The outbreak of the SARS-CoV-2 global pandemic heightened the pace of vaccine development with various vaccines being approved for human use in a span of 24 months. The SARS-CoV-2 trimeric spike (S) surface glycoprotein, which mediates viral entry by binding to ACE2, is a key target for vaccines and therapeutic antibodies. Plant biopharming is recognized for its scalability, speed, versatility, and low production costs and is an increasingly promising molecular pharming vaccine platform for human health. We developed Nicotiana benthamiana-produced SARS-CoV-2 virus-like particle (VLP) vaccine candidates displaying the S-protein of the Beta (B.1.351) variant of concern (VOC), which triggered cross-reactive neutralising antibodies against Delta (B.1.617.2) and Omicron (B.1.1.529) VOCs. In this study, immunogenicity of the VLPs (5 µg per dose) adjuvanted with three independent adjuvants i.e. oil-in-water based adjuvants SEPIVAC SWETM (Seppic, France) and "AS IS" (Afrigen, South Africa) as well as a slow-release synthetic oligodeoxynucleotide (ODN) adjuvant designated NADA (Disease Control Africa, South Africa) were evaluated in New Zealand white rabbits and resulted in robust neutralising antibody responses after booster vaccination, ranging from 1:5341 to as high as 1:18204. Serum neutralising antibodies elicited by the Beta variant VLP vaccine also showed cross-neutralisation against the Delta and Omicron variants with neutralising titres ranging from 1:1702 and 1:971, respectively. Collectively, these data provide support for the development of a plant-produced VLP based candidate vaccine against SARS-CoV-2 based on circulating variants of concern.


Subject(s)
COVID-19 Vaccines , COVID-19 , Rabbits , Animals , Humans , SARS-CoV-2 , Molecular Farming , COVID-19/prevention & control , Adjuvants, Immunologic , Antibodies, Neutralizing , South Africa , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics , Immunogenicity, Vaccine
9.
Front Immunol ; 14: 1118523, 2023.
Article in English | MEDLINE | ID: covidwho-2253825

ABSTRACT

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Epitopes , COVID-19 Vaccines , Polysaccharides , Antibodies, Neutralizing
10.
Front Med (Lausanne) ; 10: 1078022, 2023.
Article in English | MEDLINE | ID: covidwho-2243254

ABSTRACT

Background: The PRECISE Study, a multi-phase cross-sectional seroprevalence study of anti-SARS-CoV-2 antibodies in Irish healthcare workers (HCW) investigated: (1) risk factors for SARS-CoV-2 seropositivity, (2) the durability of antibody responses in a highly vaccinated HCW cohort, and (3) the neutralisation capacity of detected antibodies, prior to booster COVID-19 vaccination. Materials and methods: Serology samples were collected across two hospital sites in November 2021 and analysed using the Roche Elecsys Anti-SARS-CoV-2/Elecsys-S Anti-SARS-CoV-2 assays to detect anti-nucleocapsid (N) and anti-spike (S) antibodies respectively. Paired serology results from prior study phases were used to analyse changes in individual HCW serostatus over time. Risk-factors for SARS-CoV-2 infection were assessed for demographic and work-related factors. Antibody neutralisation capacity was assessed in a subset of samples via an in vitro ACE2 binding enzyme-linked immunosorbent assay. Results: 2,344 HCW samples were analysed. Median age was 43 years (IQR 33-50) with 80.5% (n = 1,886) female participants. Irish (78.9%, n = 1,850) and Asian (12.3%, n = 288) were the most commonly reported ethnicities. Nursing/midwifery (39.3%, n = 922) was the most common job role. 97.7% of participants were fully vaccinated, with Pfizer (81.1%, n = 1,902) and AstraZeneca (16.1%, n = 377) the most common vaccines received. Seroprevalence for anti-SARS-CoV-2 antibodies indicating prior infection was 23.4%, of these 33.6% represented previously undiagnosed infections. All vaccinated participants demonstrated positive anti-S antibodies and in those with paired serology, no individual demonstrated loss of previously positive anti-S status below assay threshold for positivity. Interval loss of anti-N antibody positivity was demonstrated in 8.8% of previously positive participants with paired results. Risk factors for SARS-CoV-2 seropositivity suggestive of previous infection included age 18-29 years (aRR 1.50, 95% CI 1.19-1.90, p < 0.001), India as country of birth (aRR 1.35, 95% CI 1.01-1.73, p = 0.036), lower education level (aRR 1.35, 95% CI 1.11-1.66, p = 0.004) and HCA job role (aRR 2.12, 95% CI 1.51-2.95, p < 0.001). Antibody neutralisation varied significantly by anti-SARS-CoV-2 antibody status, with highest levels noted in those anti-N positive, in particular those with vaccination plus previous SARS-CoV-2 infection. Conclusion: All vaccinated HCWs maintained anti-S positivity prior to COVID-19 booster vaccination, however anti-N positivity was more dynamic over time. Antibody neutralisation capacity was highest in participants with COVID-19 vaccination plus prior SARS-CoV-2 infection.

11.
Wellcome Open Res ; 6: 358, 2021.
Article in English | MEDLINE | ID: covidwho-2228543

ABSTRACT

Background: Lateral flow immunoassays (LFIAs) are able to achieve affordable, large scale antibody testing and provide rapid results without the support of central laboratories. As part of the development of the REACT programme extensive evaluation of LFIA performance was undertaken with individuals following natural infection. Here we assess the performance of the selected LFIA to detect antibody responses in individuals who have received at least one dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Methods: This was a prospective diagnostic accuracy study. Sampling was carried out at renal outpatient clinic and healthcare worker testing sites at Imperial College London NHS Trust. Two cohorts of patients were recruited; the first was a cohort of 108 renal transplant patients attending clinic following two doses of SARS-CoV-2 vaccine, the second cohort comprised 40 healthcare workers attending for first SARS-CoV-2 vaccination and subsequent follow up. During the participants visit, finger-prick blood samples were analysed on LFIA device, while paired venous sampling was sent for serological assessment of antibodies to the spike protein (anti-S) antibodies. Anti-S IgG was detected using the Abbott Architect SARS-CoV-2 IgG Quant II CMIA. A total of 186 paired samples were collected. The accuracy of Fortress LFIA in detecting IgG antibodies to SARS-CoV-2 compared to anti-spike protein detection on Abbott Assay Results: The LFIA had an estimated sensitivity of 92.0% (114/124; 95% confidence interval [CI] 85.7% to 96.1%) and specificity of 93.6% (58/62; 95% CI 84.3% to 98.2%) using the Abbott assay as reference standard (using the threshold for positivity of 7.10 BAU/ml) Conclusions: Fortress LFIA performs well in the detection of antibody responses for intended purpose of population level surveillance but does not meet criteria for individual testing.

12.
Vaccines (Basel) ; 11(1)2022 Dec 27.
Article in English | MEDLINE | ID: covidwho-2228548

ABSTRACT

Coronaviruses infections, culminating in the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic beginning in 2019, have highlighted the importance of effective vaccines to induce an antibody response with cross-neutralizing activity. COVID-19 vaccines have been rapidly developed to reduce the burden of SARS-CoV-2 infections and disease severity. Cross-protection from seasonal human coronaviruses (hCoVs) infections has been hypothesized but is still controversial. Here, we investigated the neutralizing activity against ancestral SARS-CoV-2 and the variants of concern (VOCs) in individuals vaccinated with two doses of either BNT162b2, mRNA-1273, or AZD1222, with or without a history of SARS-CoV-2 infection. Antibody neutralizing activity to SARS-CoV-2 and the VOCs was higher in BNT162b2-vaccinated subjects who were previously infected with SARS-CoV-2 and conferred broad-spectrum protection. The Omicron BA.1 variant was the most resistant among the VOCs. COVID-19 vaccination did not confer protection against hCoV-HKU1. Conversely, antibodies induced by mRNA-1273 vaccination displayed a boosting in their neutralizing activity against hCoV-NL63, whereas AZD1222 vaccination increased antibody neutralization against hCoV-229E, suggesting potential differences in antigenicity and immunogenicity of the different spike constructs used between various vaccination platforms. These data would suggest that there may be shared epitopes between the HCoVs and SARS-CoV-2 spike proteins.

14.
Frontiers in Nanotechnology ; 4, 2022.
Article in English | Scopus | ID: covidwho-2099190

ABSTRACT

COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2. From its initial appearance in Wuhan, China in 2019, it developed rapidly into a global pandemic. In addition to vaccines, therapeutic antibodies play an important role in immediately treating susceptible individuals to lessen severity of the disease. In this study, phage display technology was utilised to isolate human scFv antibody fragments that bind the receptor-binding domain (RBD) of SARS-CoV-2 Wuhan-Hu-1 spike protein. Of eight RBD-binding scFvs isolated, two inhibited interaction of RBD with ACE2 protein on VeroE6 cells. Both scFvs also exhibited binding to SARS-CoV-2 Delta variant spike protein but not to Omicron variant spike protein in a Raman spectroscopy immunotest. The study demonstrates the potential of recombinant antibody approaches to rapidly isolate antibody moieties with virus neutralisation potential. Copyright © 2022 Antoine, Mohammadi, McDermott, Walsh, Johnson, Wawrousek and Wall.

15.
Clin Transl Immunology ; 11(10): e1424, 2022.
Article in English | MEDLINE | ID: covidwho-2085017

ABSTRACT

Objectives: Following infection with SARS-CoV-2, virus-specific antibodies are generated, which can both neutralise virions and clear infection via Fc effector functions. The importance of IgG antibodies for protection and control of SARS-CoV-2 has been extensively reported. By comparison, other antibody isotypes including IgA have been poorly characterised. Methods: Here, we characterised plasma IgA from 41 early convalescent COVID-19 subjects for neutralisation and Fc effector functions. Results: Convalescent plasma IgA from > 60% of the cohort had the capacity to inhibit the interaction between wild-type RBD and ACE2. Furthermore, a third of the cohort induced stronger IgA-mediated ACE2 inhibition than matched IgG when tested at equivalent concentrations. Plasma IgA and IgG from this cohort broadly recognised similar RBD epitopes and had similar capacities to inhibit ACE2 from binding to 22 of the 23 prevalent RBD mutations assessed. However, plasma IgA was largely incapable of mediating antibody-dependent phagocytosis in comparison with plasma IgG. Conclusion: Overall, convalescent plasma IgA contributed to the neutralising antibody response of wild-type SARS-CoV-2 RBD and various RBD mutations. However, this response displayed large heterogeneity and was less potent than IgG.

16.
Biochem Biophys Rep ; 32: 101348, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031156

ABSTRACT

Background: There is an urgent need to identify effective therapy to treat coronavirus diseases 2019 (COVID-19). Supplement consumption is becoming popular in this pandemic era. An example of this is probiotic consumption to improve the host's immune system. Objective: This study aimed to prove whether antibodies from people taking probiotics could influence lactate dehydrogenase (LDH), adenosine triphosphate (ATP) values, and cell viability in vitro in peripheral blood mononuclear cells (PBMCs) inoculated with the SARS-CoV-2 spike protein as COVID-19 cells models. Methods: This was an experimental study with control and intervention groups, totally in 12 groups divided based on antibody levels, probiotic intervention, probiotic non-intervention group, SARS-CoV-2 infection group, and non-SARS-CoV-2 infection group. In vitro assays were carried out on PBMC cell cultures inoculated with S1 SARS-CoV-2 recombinant as a COVID-19 cell model. The COVID-19 cell model was given antibodies divided into three antibody level groups: sRBD levels of <3, 325.76 and 646.18. The cytotoxicity assessment examined increased levels of LDH, cytopathic activity by measuring ATP levels, and cell viability by XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay. Data were analyzed with SPSS 21 for Windows. Results: This study showed a significant difference in the LDH value (p < 0.001) between each group. The difference in ATP values between groups was significant (p < 0.001). Meanwhile, the cell viability examination found that there was a tendency of decreased XTT (cell viability in %) when there was an increase of LDH and ATP. Conclusion: The change of LDH values occurred most in the antibody group that did not consume probiotics. The highest cytopathic activity based on the ATP values occurred in the infected cell culture group with antibody levels of 325.76 and consuming probiotics. In addition, LDH and ATP activities provided evidence of a significant influence on cell viability.

17.
Transfusionsmedizin ; 12(03):157-162, 2022.
Article in English | Web of Science | ID: covidwho-2004809

ABSTRACT

For more than two years the whole world is suffering from the COVID-19 pandemic. Before introduction of vaccination strategies the administration of fresh frozen plasma from convalescent donors seemed a promising therapeutic approach, especially if administered during the early phase of disease. The outcomes in multicenter trials on huge cohorts, however, did not meet the expectations. This is one reason why German guidelines do not recommend the use of convalescent plasma. One explanation could be varying and often low concentrations of COVID-19 antibodies in a majority of plasma units at the beginning of plasma applications, which could account for the lack of a convincing clinical efficacy. Therefore, we follow a strategy to selectively collect and concentrate human immunoglobulins using immunoadsorption as the method of antibody donation.

18.
EClinicalMedicine ; 50: 101529, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1914317

ABSTRACT

Background: The CombiVacS study was designed to assess immunogenicity and reactogenicity of the heterologous ChAdOx1-S/BNT162b2 combination, and 14-day results showed a strong immune response. The present secondary analysis addresses the evolution of humoral and cellular response up to day 180. Methods: Between April 24 and 30, 2021, 676 adults primed with ChAdOx1-S were enrolled in five hospitals in Spain, and randomised to receive BNT162b2 as second dose (interventional group [IG]) or no vaccine (control group [CG]). Individuals from CG received BNT162b2 as second dose and also on day 28, as planned based on favourable results on day 14. Humoral immunogenicity, measured by immunoassay for SARS-CoV-2 receptor binding domain (RBD), antibody functionality using pseudovirus neutralisation assays for the reference (G614), Alpha, Beta, Delta, and Omicron variants, as well as cellular immune response using interferon-γ and IL-2 immunoassays were assessed at day 28 after BNT162b2 in both groups, at day 90 (planned only in the interventional group) and at day 180 (laboratory data cut-off on Nov 19, 2021). This study was registered with EudraCT (2021-001978-37) and ClinicalTrials.gov (NCT04860739). Findings: In this secondary analysis, 664 individuals (441 from IG and 223 from CG) were included. At day 28 post vaccine, geometric mean titres (GMT) of RBD antibodies were 5616·91 BAU/mL (95% CI 5296·49-5956·71) in the IG and 7298·22 BAU/mL (6739·41-7903·37) in the CG (p < 0·0001). RBD antibodies titres decreased at day 180 (1142·0 BAU/mL [1048·69-1243·62] and 1836·4 BAU/mL [1621·62-2079·62] in the IG and CG, respectively; p < 0·0001). Neutralising antibodies also waned from day 28 to day 180 in both the IG (1429·01 [1220·37-1673·33] and 198·72 [161·54-244·47], respectively) and the CG (1503·28 [1210·71-1866·54] and 295·57 [209·84-416·33], respectively). The lowest variant-specific response was observed against Omicron-and Beta variants, with low proportion of individuals exhibiting specific neutralising antibody titres (NT50) >1:100 at day 180 (19% and 22%, respectively). Interpretation: Titres of RBD antibodies decay over time, similar to homologous regimes. Our findings suggested that delaying administration of the second dose did not have a detrimental effect after vaccination and may have improved the response obtained. Lower neutralisation was observed against Omicron and Beta variants at day 180. Funding: Funded by Instituto de Salud Carlos III (ISCIII).

19.
Comput Biol Med ; 147: 105758, 2022 08.
Article in English | MEDLINE | ID: covidwho-1894907

ABSTRACT

BACKGROUND: The vaccines used against SARS-CoV-2 by now have been able to develop some neutralising antibodies in the vaccinated population and their effectiveness has been challenged by the emergence of the new strains with numerous mutations in the spike protein of SARS-CoV-2. Since S protein is the major immunogenic protein of the virus which contains Receptor Binding Domain (RBD) that interacts with the human Angiotensin-Converting Enzyme 2 (ACE2) receptors, any mutations in this region should affect the neutralisation potential of the antibodies leading to the immune evasion. Several variants of concern of the virus have emerged so far, amongst which the most critical are Delta and recently reported Omicron. In this study, we have mapped and reported mutations on the modelled RBD and evaluated binding affinities of various human antibodies with it. METHOD: Docking and molecular dynamics simulation studies have been used to explore the effect of mutations on the structure of RBD and RBD-antibody interaction. RESULTS: These analyses show that the mutations mostly at the interface of a nearby region lower the binding affinity of the antibody by ten to forty percent, with a downfall in the number of interactions formed as a whole. It implies the generation of immune escape variants. CONCLUSIONS: Notable mutations and their effect was characterised that explain the structural basis of antibody efficacy in Delta and a compromised neutralisation effect for the Omicron variant. Thus, our results pave the way for robust vaccine design that can be effective for many variants.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Immune Evasion , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
20.
Microorganisms ; 10(6)2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1884281

ABSTRACT

The severity of coronavirus disease 2019 (COVID-19) may be influenced by pre-existing immune responses against endemic coronaviruses, but conflicting data have been reported. We studied 148 patients who were hospitalised because of a confirmed diagnosis of COVID-19, classified mild in 58, moderate in 44, and severe in 46. The controls were 27 healthy subjects. At admission, blood samples were collected for the measurement of biomarkers of disease severity and levels of the IgG against the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and pre-existing coronaviruses OC43, HKU1, NL63 and 229E. Higher levels of IgG antibodies against the RBD of pre-existing coronavirus (with the highest significance for anti-HKU1 IgG, p = 0.01) were found in patients with mild disease, compared with those with moderate or severe disease. Multivariable logistic regression confirmed the association of high levels of antibodies to pre-existing coronavirus with mild disease and showed their associations with low levels of the complement activation marker SC5b-9 (p range = 0.007-0.05). High levels of anti-NL63 antibodies were associated with low levels of the coagulation activation marker D-dimer (p = 0.04), while high levels of IgG against 229E were associated with low levels of the endothelial activation marker von Willebrand factor (p = 0.05). Anti-SARS-CoV-2-neutralising activity of plasma positively correlated with anti-SARS-CoV-2 IgG (r = 0.53, p = 0.04) and with anti-HKU1 IgG (r = 0.51, p = 0.05). In hospitalised patients with COVID-19, high levels of antibodies to pre-existing coronaviruses are associated with mild disease, suggesting that their measurement could be useful in predicting the severity of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL